Part Number Hot Search : 
PACKBMQ 00GA1 1BCPG 62R957 BR100 LLST220 RH661 683ML
Product Description
Full Text Search
 

To Download MAX2042 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 19-4679; Rev 0; 8/09
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer
General Description
The MAX2042 single, high-linearity upconversion/downconversion mixer provides +36dBm IIP3, 7.3dB noise figure, and 7.2dB conversion loss for 2000MHz to 3000MHz WCS, LTE, WiMAXK, and MMDS wireless infrastructure applications. With a wide LO frequency range of 1800MHz to 2800MHz, this particular mixer is ideal for low-side LO injection receiver and transmitter architectures. High-side LO injection is supported by the MAX2042A, which is pinpin and functionally compatible with the MAX2042. In addition to offering excellent linearity and noise performance, the MAX2042 also yields a high level of component integration. This device includes a doublebalanced passive mixer core, an LO buffer, and on-chip baluns that allow for single-ended RF and LO inputs. The MAX2042 requires a nominal LO drive of 0dBm, and supply current is typically 138mA at VCC = +5.0V or 120mA at VCC = +3.3V. The MAX2042 is pin compatible with the MAX2042A 2000MHz to 3900MHz mixer. The device is also pin similar with the MAX2029/MAX2031 650MHz to 1000MHz mixers, the MAX2039/MAX2041 1700MHz to 3000MHz mixers, and the MAX2044/MAX2044A 3000MHz to 4000MHz mixers, making this entire family of up/downconverters ideal for applications where a common PCB layout is used for multiple frequency bands. The MAX2042 is available in a compact 20-pin thin QFN (5mm x 5mm) package with an exposed pad. Electrical www..com is guaranteed over the extended -40NC to performance +85NC temperature range. S S S S S S S S S S S S S
Features
2000MHz to 3000MHz RF Frequency Range 1800MHz to 2800MHz LO Frequency Range 50MHz to 500MHz IF Frequency Range 7.2dB Conversion Loss 7.3dB Noise Figure +36dBm Typical IIP3 +23.4dBm Typical Input 1dB Compression Point 70dBc Typical 2RF-2LO Spurious Rejection at PRF = -10dBm Integrated LO Buffer Integrated RF and LO Baluns for Single-Ended Inputs Low -3dBm to +3dBm LO Drive Pin Compatible with the MAX2042A 2000MHz to 3900MHz High-Side LO Injection Mixer Pin Similar with the MAX2029/MAX2031 650MHz to 1000MHz Mixers, MAX2039/MAX2041 1700MHz to 3000MHz Mixers, and MAX2044/MAX2044A 3000MHz to 4000MHz Mixers Single +5.0V or +3.3V Supply External Current-Setting Resistor Provides Option for Operating Device in Reduced-Power/ReducedPerformance Mode
MAX2042
S S
Pin Configuration/ Functional Diagram
GND GND 16 15 GND IF18
TOP VIEW
GND
Applications
2.3GHz WCS Base Stations 2.5GHz WiMAX and LTE Base Stations 2.7GHz MMDS Base Stations Fixed Broadband Wireless Access Wireless Local Loop Private Mobile Radios Military Systems
GND RF VCC
+
1
20
IF+ 19
17
2
MAX2042
14
VCC
3
13
GND
GND
4 EP*
12
GND
Ordering Information
PART MAX2042ETP+ TEMP RANGE -40NC to +85NC PIN-PACKAGE 20 Thin QFN-EP*
GND
5 6 VCC 7 LOBIAS 8 VCC 9 GND 10 GND
11
LO
MAX2042ETP+T -40NC to +85NC 20 Thin QFN-EP* +Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad. T = Tape and reel.
*EXPOSED PAD
WiMAX is a trademark of WiMAX Forum.
_______________________________________________________________ Maxim Integrated Products 1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2042
ABSOLUTE MAXIMUM RATINGS
VCC to GND..........................................................-0.3V to +5.5V IF+, IF-, LOBIAS to GND .......................... -0.3V to (VCC + 0.3V) RF, LO Input Power ....................................................... +20dBm RF, LO Current (RF and LO are DC shorted to GND through a balun)................................... .............50mA Continuous Power Dissipation (Note 1) .............................5.0W BJA (Notes 2, 3) ............................................................ +38NC/W BJC (Notes 1, 3) ............................................................ +13NC/W Operating Case Temperature Range (Note 4)........................................................... -40NC to +85NC Junction Temperature .....................................................+150NC Storage Temperature Range............................ -65NC to +150NC Lead Temperature (soldering, 10s) ................................+300NC
Note 1: Based on junction temperature TJ = TC + (BJC x VCC x ICC). This formula can be used when the temperature of the exposed pad is known while the device is soldered down to a PCB. See the Applications Information section for details. The junction temperature must not exceed +150NC. Note 2: Junction temperature TJ = TA + (BJA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is known. The junction temperature must not exceed +150NC. Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial. Note 4: TC is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
+5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, VCC = +4.75V to +5.25V, no input AC signals. TC = -40NC to +85NC, unless otherwise noted. Typical values are at VCC = +5.0V, TC = +25NC, all parameters are production tested.) PARAMETER Supply Voltage Supply Current
www..com +3.3V SUPPLY
SYMBOL VCC ICC
CONDITIONS
MIN 4.75
TYP 5.0 138
MAX 5.25 150
UNITS V mA
DC ELECTRICAL CHARACTERISTICS
SYMBOL VCC ICC CONDITIONS MIN 3.0 TYP 3.3 120 MAX 3.6 135 UNITS V mA
(Typical Application Circuit, VCC = +3.0V to +3.6V, no input AC signals. TC = -40NC to +85NC, unless otherwise noted. Typical values are at VCC = +3.3V, TC = +25NC, all parameters are production tested.) PARAMETER Supply Voltage Supply Current
RECOMMENDED AC OPERATING CONDITIONS
PARAMETER RF Frequency Range LO Frequency IF Frequency LO Drive fLO fIF PLO SYMBOL CONDITIONS Typical Application Circuit with C1 = 8.2pF, see Table 1 for details (Notes 5, 6) (Notes 5, 6) Using M/A-Com MABAES0029 1:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Notes 5, 6) (Notes 5, 6) MIN 2000 1800 50 -3 0 TYP MAX 3000 2800 500 +3 UNITS MHz MHz MHz dBm
2
______________________________________________________________________________________
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer
+5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +4.75V to +5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 2300MHz to 2900MHz, fIF = 300MHz, fLO = 2000MHz to 2600MHz, fRF > fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = +5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 2300MHz, fLO = 2300MHz, fIF = 300MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 7) PARAMETER Small-Signal Conversion Loss SYMBOL LC CONDITIONS fRF = 2300MHz to 2900MHz, TC = +25NC (Note 8) fRF = 2305MHz to 2360MHz fRF = 2500MHz to 2570MHz Loss Variation vs. Frequency DLC fRF = 2570MHz to 2620MHz fRF = 2500MHz to 2690MHz fRF = 2700MHz to 2900MHz Conversion Loss Temperature Coefficient Single Sideband Noise Figure Noise Figure Temperature Coefficient TCCL NFSSB TCNF TC = -40NC to +85NC No blockers present fRF = 2300MHz to 2900MHz, single sideband, no blockers present, TC = -40NC to +85NC +8dBm blocker tone applied to RF port, fRF = 2600MHz, fLO = 2300MHz, fBLOCKER = 2795MHz, PLO = 0dBm, VCC = 5.0V, TC = +25NC (Notes 5, 9) TC = +25NC (Notes 5, 10) fRF = 2300MHz fRF = 2600MHz fRF = 2900MHz fRF1 = 2300MHz, fRF2 = 2301MHz, fLO = 2000MHz (Note 5) fRF1 = 2600MHz, fRF2 = 2601MHz, fLO = 2300MHz (Note 8) fRF1 = 2900MHz, fRF2 = 2901MHz, fLO = 2600MHz (Note 5) 22.5 20.6 17.6 34 MIN 6.7 TYP 7.2 0.15 0.15 0.15 0.15 0.20 0.0071 7.3 0.019 dB/NC dB dB/NC dB MAX 8.1 UNITS dB
MAX2042
Noise Figure Under Blocking
NFB
20.8 23.4 22.1 20.7 36
25
dB
Input 1dB Compression Point
www..com
IP1dB
dBm
Third-Order Input Intercept Point
IIP3
PRF1 = PRF2 = 0dBm/tone, PLO = 0dBm, TC = +25NC
31
34
dBm
28
30
IIP3 Variation with TC 2RF - 2LO Spur Rejection 3RF - 3LO Spur Rejection RF Input Return Loss LO Input Return Loss 2x2 3x3 RLRF RLLO
fRF = 2300MHz to 2900MHz, fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = 0dBm/ tone, TC = -40NC to +85NC fSPUR = fLO + 150MHz (Note 5) fSPUR = fLO + 100MHz (Note 5) PRF = -10dBm PRF = 0dBm PRF = -10dBm 64 54 80 60
Q0.5 70 60 92 72 17 15
dB dBc dBc dB dB
PRF = 0dBm LO on and IF terminated into a matched impedance RF and IF terminated into a matched impedance
_______________________________________________________________________________________
3
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2042
+5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION) (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +4.75V to +5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 2300MHz to 2900MHz, fIF = 300MHz, fLO = 2000MHz to 2600MHz, fRF > fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = +5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 2300MHz, fLO = 2300MHz, fIF = 300MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 7) PARAMETER IF Output Impedance SYMBOL ZIF CONDITIONS Nominal differential impedance at the IC's IF outputs RF terminated into 50I, LO driven by 50I source, IF transformed to 50I using external components shown in the Typical Application Circuit PLO = +3dBm (Note 8) fLO = 2000MHz to 2800MHz, PLO = +3dBm (Note 8) PLO = +3dBm fLO = 2000MHz to 2800MHz, PLO = +3dBm (Note 8) 30 MIN TYP 50 MAX UNITS I
IF Output Return Loss RF-to-IF Isolation LO Leakage at RF Port 2LO Leakage at RF Port LO Leakage at IF Port
RLIF
18 37 -28 -36 -24.2 -16 -22
dB dB dBm dBm dBm
+3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50I sources. Typical values are for TC = +25NC, VCC = +3.3V, PRF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2300MHz, fIF = 300MHz, unless otherwise noted.) (Note 7)
www..com
PARAMETER
SYMBOL LC DLC TCCL NFSSB TCNF IP1dB IIP3 (Note 8)
CONDITIONS fRF = 2300MHz to 2900MHz, any 100MHz band TC = -40NC to +85NC No blockers present Single sideband, no blockers present, TC = -40NC to +85NC (Note 10) fRF1 = 2600MHz, fRF2 = 2601MHz, PRF1 = PRF2 = 0dBm/tone fRF1 = 2600MHz, fRF2 = 2601MHz, PRF1 = PRF2 = 0dBm/tone, TC = -40NC to +85NC
MIN
TYP 7.2 0.2 0.008 7.5 0.019 20 31
MAX
UNITS dB dB dB/NC dB dB/NC dBm dBm dB dBc dBc
Small-Signal Conversion Loss Loss Variation vs. Frequency Conversion Loss Temperature Coefficient Single Sideband Noise Figure Noise Figure Temperature Coefficient Input 1dB Compression Point Third-Order Input Intercept Point IIP3 Variation with TC 2RF - 2LO Spur Rejection 3RF - 3LO Spur Rejection
Q0.25 72 62 87 67
2x2 3x3
PRF = -10dBm, fSPUR = fLO + 150MHz PRF = 0dBm, fSPUR = fLO + 150MHz PRF = -10dBm, fSPUR = fLO + 100MHz PRF = 0dBm, fSPUR = fLO + 100MHz
4
______________________________________________________________________________________
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer
+3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION) (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50I sources. Typical values are for TC = +25NC, VCC = +3.3V, PRF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2300MHz, fIF = 300MHz, unless otherwise noted.) (Note 7) PARAMETER RF Input Return Loss LO Input Return Loss IF Output Impedance SYMBOL RLRF RLLO ZIF CONDITIONS LO on and IF terminated into a matched impedance RF and IF terminated into a matched impedance Nominal differential impedance at the IC's IF outputs RF terminated into 50I, LO driven by 50I source, IF transformed to 50I using external components shown in the Typical Application Circuit fRF = 2300MHz to 2900MHz, PLO = +3dBm fLO = 1800MHz to 2800MHz, PLO = +3dBm fLO = 1800MHz to 2800MHz, PLO = +3dBm fLO = 1800MHz to 2800MHz, PLO = +3dBm MIN TYP 15 12 50 MAX UNITS dB dB I
MAX2042
IF Output Return Loss Minimum RF-to-IF Isolation Maximum LO Leakage at RF Port Maximum 2LO Leakage at RF Port Maximum LO Leakage at IF Port
RLIF
18 36 -24.5 -24 -20
dB dB dBm dBm dBm
+5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +4.75V to +5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PIF = 0dBm, fRF = 2300MHz to 2900MHz, fIF =200MHz, fLO = 2100MHz to 2700MHz, fRF > fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = +5.0V, PIF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2400MHz, www..com fIF = 200MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 7) PARAMETER Small-Signal Conversion Loss Loss Variation vs. Frequency Conversion Loss Temperature Coefficient Input 1dB Compression Point Third-Order Input Intercept Point SYMBOL LC DLC TCCL IP1dB IIP3 CONDITIONS (Note 8) fRF = 2300MHz to 2960MHz, any 100MHz band TC = -40NC to +85NC (Note 10) fIF1 = 200MHz, fIF2 = 201MHz, PIF1 = PIF2 = 0dBm/tone, fLO = 2400MHz, PLO = 0dBm, TC = +25NC (Note 8) fIF1 = 200MHz, fIF2 = 201MHz, PIF1 = PIF2 = 0dBm/tone, fLO = 2400MHz, PLO = 0dBm, TC = -40NC to +85NC LO - 2IF LO + 2IF LO - 3IF LO + 3IF POUT = 0dBm (Note 9) 30 MIN TYP 6.8 0.2 0.007 22.7 32.4 MAX UNITS dB dB dB/NC dBm dBm
IIP3 Variation with TC LO Q 2IF Spur Rejection LO Q 3IF Spur Rejection Output Noise Floor 1x2 1x3
Q0.5 70 67 82 77 -163
dB dBc dBc dBm/Hz 5
_______________________________________________________________________________________
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2042
+3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 2, RF and LO ports are driven from 50I sources. Typical values are for TC = +25NC, VCC = +3.3V, PIF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2400MHz, fIF = 200MHz, unless otherwise noted.) (Note 7) PARAMETER Small-Signal Conversion Loss Loss Variation vs. Frequency Conversion Loss Temperature Coefficient Input 1dB Compression Point Third-Order Input Intercept Point IIP3 Variation with TC LO Q 2IF Spur Rejection LO Q 3IF Spur Rejection Output Noise Floor 1x2 1x3 SYMBOL LC DLC TCCL IP1dB IIP3 fRF = 2300MHz to 2900MHz, any 100MHz band TC = -40NC to +85NC (Note 10) fIF1 = 200MHz, fIF2 = 201MHz, PIF1 = PIF2 = 0dBm/tone fIF1 = 200MHz, fIF2 = 201MHz, PIF1 = PIF2 = 0dBm/tone, fLO = 2400MHz, PLO = 0dBm, TC = -40NC to +85NC LO - 2IF LO + 2IF LO - 3IF LO + 3IF POUT = 0dBm (Note 9) CONDITIONS MIN TYP 6.8 0.15 0.008 19 29.5 MAX UNITS dB dB dB/NC dBm dBm dB dBc dBc dBm/Hz
Q0.75 72 70 73 70 -160
Note 5: Not production tested. Note 6: Operation outside this range is possible, but with degraded performance of some parameters. See the Typical Operating Characteristics. Note 7: All limits reflect losses of external components, including a 0.5dB loss at fIF = 300MHz due to the 1:1 impedance transformer. Output measurements were taken at IF outputs of the Typical Application Circuit. www..com Note 8: 100% production tested for functional performance. Note 9: Measured with external LO source noise filtered so that the noise floor is -174dBm/Hz. This specification reflects the effects of all SNR degradations in the mixer including the LO noise, as defined in Application Note 2021: Specifications and Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers. Note 10: Maximum reliable continuous input power applied to the RF port of this device is +20dBm from a 50I source.
6
______________________________________________________________________________________
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +5.0V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
MAX2042
+5.0V Downconverter Curves
CONVERSION LOSS vs. RF FREQUENCY
MAX2042 toc01
CONVERSION LOSS vs. RF FREQUENCY
MAX2042 toc02
CONVERSION LOSS vs. RF FREQUENCY
MAX2042 toc03
9 TC = +85NC CONVERSION LOSS (dB) 8 TC = +25NC
9
9
CONVERSION LOSS (dB)
7
7 PLO = -3dBm, 0dBm, +3dBm 6
CONVERSION LOSS (dB)
8
8
7 VCC = 4.75V, 5.0V, 5.25V 6
6
TC = -40NC
5 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
5 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
5 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
MAX2042 toc04
INPUT IP3 vs. RF FREQUENCY
MAX2042 toc05
INPUT IP3 vs. RF FREQUENCY
VCC = 5.25V PRF = 0dBm/TONE
MAX2042 toc06
40 PRF = 0dBm/TONE TC = -40NC INPUT IP3 (dBm) 35 TC = +85NC
40
PRF = 0dBm/TONE
40
INPUT IP3 (dBm)
INPUT IP3 (dBm)
35
35 VCC = 4.75V 30 VCC = 5.0V
30 www..com
30
PLO = -3dBm, 0dBm, +3dBm
TC = +25NC
25 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
25 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
25 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
2RF-2LO RESPONSE vs. RF FREQUENCY
MAX2042 toc07
2RF-2LO RESPONSE vs. RF FREQUENCY
MAX2042 toc08
2RF-2LO RESPONSE vs. RF FREQUENCY
PRF = 0dBm 2RF-2LO RESPONSE (dBc) 70 65 60 55 50 VCC = 4.75V, 5.0V, 5.25V
MAX2042 toc09
75 TC = +85NC 2RF-2LO RESPONSE (dBc) 70 65 60 55 50 2000 2200 2400 2600 2800 TC = +25NC TC = -40NC PRF = 0dBm
75 PRF = 0dBm 2RF-2LO RESPONSE (dBc) 70 65 60 55 50 PLO = 0dBm PLO = -3dBm 2000 2200 2400 2600 2800 PLO = +3dBm
75
3000
3000
2000
2200
2400
2600
2800
3000
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
_______________________________________________________________________________________
7
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2042
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +5.0V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
+5.0V Downconverter Curves
3RF-3LO RESPONSE vs. RF FREQUENCY
MAX2042 toc10
3RF-3LO RESPONSE vs. RF FREQUENCY
MAX2042 toc11
3RF-3LO RESPONSE vs. RF FREQUENCY
PRF = 0dBm 3RF-3LO RESPONSE (dBc)
MAX2042 toc12
85 PRF = 0dBm 3RF-3LO RESPONSE (dBc)
85 PRF = 0dBm 3RF-3LO RESPONSE (dBc)
85
75
75
75
TC = -40NC, +25NC, +85NC 65
65
PLO = -3dBm, 0dBm, +3dBm
65
VCC = 4.75V, 5.0V, 5.25V
55 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
55 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
55 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
MAX2042 toc13
NOISE FIGURE vs. RF FREQUENCY
MAX2042 toc14
NOISE FIGURE vs. RF FREQUENCY
MAX2042 toc15
10 9 NOISE FIGURE (dB) 8 7 TC = +25NC TC = -40NC 2000 2200 2400 2600 2800 TC = +85NC
10 9 NOISE FIGURE (dB) 8 7 6 PLO = -3dBm, 0dBm, +3dBm 5 4
10 9 NOISE FIGURE (dB) 8 7 6 VCC = 4.75V, 5.0V, 5.25V 5 4
6 www..com 5 4
3000
2000
2200
2400
2600
2800
3000
2000
2200
2400
2600
2800
3000
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
INPUT P1dB vs. RF FREQUENCY
MAX2042 toc16
INPUT P1dB vs. RF FREQUENCY
MAX2042 toc17
INPUT P1dB vs. RF FREQUENCY
VCC = 5.25V
MAX2042 toc18
25 TC = -40NC 23 INPUT P1dB (dBm)
25
25
23 INPUT P1dB (dBm) TC = +25NC PLO = -3dBm, 0dBm, +3dBm 21 INPUT P1dB (dBm)
23 VCC = 4.75V
21
21
VCC = 5.0V
19 TC = +85NC 17 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
19
19
17 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
17 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
8
______________________________________________________________________________________
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +5.0V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
MAX2042
+5.0V Downconverter Curves
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX2042 toc19
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX2042 toc20
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX2042 toc21
-10 TC = -40NC LO LEAKAGE AT IF PORT (dBm)
-10
-10
LO LEAKAGE AT IF PORT (dBm)
-20 TC = +85NC -30
-20 PLO = -3dBm, 0dBm, +3dBm -30
LO LEAKAGE AT IF PORT (dBm)
-20
TC = +25NC
VCC = 4.75V, 5.0V, 5.25V -30
-40 1700 1900 2100 2300 2500 2700 LO FREQUENCY (MHz)
-40 1700 1900 2100 2300 2500 2700 LO FREQUENCY (MHz)
-40 1700 1900 2100 2300 2500 2700 LO FREQUENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX2042 toc22
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX2042 toc23
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX2042 toc24
60
60
60
RF-TO-IF ISOLATION (dB)
RF-TO-IF ISOLATION (dB)
TC = +85NC 40
40
RF-TO-IF ISOLATION (dB)
50
50
50
40
www..com
30 TC = -40NC 20 2000 2200 2400 2600 2800 3000 RF FREQENCY (MHz) TC = +25NC
30
PLO = -3dBm, 0dBm, +3dBm
30
VCC = 4.75V, 5.0V, 5.25V
20 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
20 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2042 toc25
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2042 toc26
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2042 toc27
-20 LO LEAKAGE AT RF PORT (dBm)
-20 LO LEAKAGE AT RF PORT (dBm)
-20 LO LEAKAGE AT RF PORT (dBm)
-25
-25
-25
-30 TC = -40NC, +25NC, +85NC -35
-30 PLO = -3dBm, 0dBm, +3dBm -35
-30 VCC = 4.75V, 5.0V, 5.25V -35
-40 1800 2000 2200 2400 2600 2800 LO FREQUENCY (MHz)
-40 1800 2000 2200 2400 2600 2800 LO FREQUENCY (MHz)
-40 1800 2000 2200 2400 2600 2800 LO FREQUENCY (MHz)
_______________________________________________________________________________________
9
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2042
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +5.0V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
+5.0V Downconverter Curves
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2042 toc28
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2042 toc29
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2042 toc30
-20 2LO LEAKAGE AT RF PORT (dBm) -25 -30 -35 -40 -45 TC = +25NC -50 1800 2000 2200 2400 2600 TC = +85NC TC = -40NC
-20 2LO LEAKAGE AT RF PORT (dBm) -25 -30 -35 -40 -45 -50 PLO = -3dBm, 0dBm, +3dBm 1800 2000 2200 2400 2600
-20 2LO LEAKAGE AT RF PORT (dBm) -25 -30 -35 -40 -45 -50 VCC = 4.75V, 5.0V, 5.25V
2800
2800
1800
2000
2200
2400
2600
2800
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
RF PORT RETURN LOSS vs. RF FREQUENCY
MAX2042 toc31
IF PORT RETURN LOSS vs. IF FREQUENCY
fLO = 2200MHz 5 IF PORT RETURN LOSS (dB) 10 VCC = 4.75V, 5.0V, 5.25V 15 20 25 30
MAX2042 toc32
0 fIF = 300MHz RF PORT RETURN LOSS (dB) 5 10 15 20 25 30 2000 2200 2400 2600 2800
0
www..com
PLO = -3dBm, 0dBm, +3dBm
3000
50
140
230
320
410
500
RF FREQUENCY (MHz)
IF FREQUENCY (MHz)
LO PORT RETURN LOSS vs. LO FREQUENCY
MAX2042 toc33
SUPPLY CURRENT vs. TEMPERATURE (TC)
VCC = 5.25V VCC = 5.0V
MAX2042 toc34
0
150 145 SUPPLY CURRENT (mA) 140 135 130 125 VCC = 4.75V
LO PORT RETURN LOSS (dB)
10
PLO = -3dBm
20 PLO = +3dBm PLO = 0dBm 30 1700 1900 2100 2300 2500 2700 LO FREQUENCY (MHz)
120 -40 -15 10 35 60 85 TEMPERATURE (C)
10
_____________________________________________________________________________________
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +3.3V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
MAX2042
+3.3V Downconverter Curves
CONVERSION LOSS vs. RF FREQUENCY
MAX2042 toc35
CONVERSION LOSS vs. RF FREQUENCY
MAX2042 toc36
CONVERSION LOSS vs. RF FREQUENCY
MAX2042 toc37
9 TC = +85NC CONVERSION LOSS (dB) 8 TC = +25NC
9
9
CONVERSION LOSS (dB)
7
7 PLO = -3dBm, 0dBm, +3dBm 6
CONVERSION LOSS (dB)
8
8
7 VCC = 3.0V, 3.3V, 3.6V 6
6
TC = -40NC
5 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
5 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
5 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
MAX2042 toc38
INPUT IP3 vs. RF FREQUENCY
MAX2042 toc39
INPUT IP3 vs. RF FREQUENCY
VCC = 3.3V, 3.6V PRF = 0dBm/TONE
MAX2042 toc40
35 TC = -40NC PRF = 0dBm/TONE
35 PRF = 0dBm/TONE
35
INPUT IP3 (dBm)
INPUT IP3 (dBm)
INPUT IP3 (dBm)
30
30 PLO = -3dBm, 0dBm, +3dBm 25
30 VCC = 3.0V 25
TC = +25NC
TC = +85NC
25 www..com
20 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
20 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
20 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
2RF-2LO RESPONSE vs. RF FREQUENCY
MAX2042 toc41
2RF-2LO RESPONSE vs. RF FREQUENCY
MAX2042 toc42
2RF-2LO RESPONSE vs. RF FREQUENCY
VCC = 3.6V 2RF-2LO RESPONSE (dBc) 70 65 60 VCC = 3.0V 55 50 PRF = 0dBm VCC = 3.3V
MAX2042 toc43
75 PRF = 0dBm 2RF-2LO RESPONSE (dBc) 70 65 60 55 TC = -40NC 50 2000 2200 2400 2600 2800 TC = +25NC
75 PRF = 0dBm 2RF-2LO RESPONSE (dBc) 70 PLO = +3dBm 65 60 PLO = 0dBm 55 50 PLO = -3dBm
75
TC = +85NC
3000
2000
2200
2400
2600
2800
3000
2000
2200
2400
2600
2800
3000
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
______________________________________________________________________________________
11
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2042
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +3.3V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
+3.3V Downconverter Curves
3RF-3LO RESPONSE vs. RF FREQUENCY
MAX2042 toc44
3RF-3LO RESPONSE vs. RF FREQUENCY
MAX2042 toc45
3RF-3LO RESPONSE vs. RF FREQUENCY
PRF = 0dBm VCC = 3.6V 3RF-3LO RESPONSE (dBc) 70
MAX2042 toc46 MAX2042 toc52 MAX2042 toc49
80 PRF = 0dBm 3RF-3LO RESPONSE (dBc)
80 PRF = 0dBm 3RF-3LO RESPONSE (dBc)
80
70
70
60
TC = -40NC, +25NC, +85NC
60
PLO = -3dBm, 0dBm, +3dBm
60
VCC = 3.3V VCC = 3.0V
50 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
50 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
50 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
MAX2042 toc47
NOISE FIGURE vs. RF FREQUENCY
MAX2042 toc48
NOISE FIGURE vs. RF FREQUENCY
10 9 NOISE FIGURE (dB) 8 7 6 5 4 VCC = 3.6V VCC = 3.3V VCC = 3.0V
10 9 NOISE FIGURE (dB) 8 7 TC = +85C
10 9 NOISE FIGURE (dB) 8 7 6 5 4 PLO = -3dBm, 0dBm, +3dBm
TC = +25C
6 www..com 5 4 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) TC = -40C
2000
2200
2400
2600
2800
3000
2000
2200
2400
2600
2800
3000
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
INPUT P1dB vs. RF FREQUENCY
MAX2042 toc50
INPUT P1dB vs. FREQUENCY
MAX2042 toc51
INPUT P1dB vs. FREQUENCY
24 VCC = 3.6V 22 INPUT P1dB (dBm) VCC = 3.3V
24
24
22 INPUT P1dB (dBm)
TC = -40C
22 INPUT P1dB (dBm)
20 TC = +25C 18 TC = +85C
20 PLO = -3dBm, 0dBm, +3dBm 18
20
18
VCC = 3.0V
16 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
16 2000 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000
16 2000 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000
12
_____________________________________________________________________________________
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +3.3V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
MAX2042
+3.3V Downconverter Curves
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX2042 toc53
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX2042 toc54
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX2042 toc55
-10 TC = -40NC LO LEAKAGE AT IF PORT (dBm) -20 TC = +85NC -30
-10 LO LEAKAGE AT IF PORT (dBm)
-10 LO LEAKAGE AT IF PORT (dBm)
-20 PLO = -3dBm, 0dBm, +3dBm -30
-20 VCC = 3.0V, 3.3V, 3.6V -30
TC = +25NC
-40 1700 1900 2100 2300 2500 LO FREQUENCY (MHz) 2700
-40 1700 1900 2100 2300 2500 LO FREQUENCY (MHz) 2700
-40 1700 1900 2100 2300 2500 LO FREQUENCY (MHz) 2700
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX2042 toc56
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX2042 toc57
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX2042 toc58
60
60
60
RF-TO-IF ISOLATION (dB)
RF-TO-IF ISOLATION (dB)
TC = +25NC 40
40
RF-TO-IF ISOLATION (dB)
50
TC = +85NC
50
50
40
TC = -40NC www..com 30
30
PLO = -3dBm, 0dBm, +3dBm
30
VCC = 3.0V, 3.3V, 3.6V
20 2000 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000
20 2000 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000
20 2000 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2042 toc59
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2042 toc60
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2042 toc61
-20 LO LEAKAGE AT RF PORT (dBm)
-20 LO LEAKAGE AT RF PORT (dBm)
-20 LO LEAKAGE AT RF PORT (dBm)
-25
-25
-25 VCC = 3.6V -30
-30
-30
-35
TC = -40NC, +25NC, +85NC
-35
PLO = -3dBm, 0dBm, +3dBm
-35
VCC = 3.0V
VCC = 3.3V
-40 1800 2000 2200 2400 2600 LO FREQUENCY (MHz) 2800
-40 1800 2000 2200 2400 2600 LO FREQUENCY (MHz) 2800
-40 1800 2000 2200 2400 2600 LO FREQUENCY (MHz) 2800
______________________________________________________________________________________
13
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2042
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +3.3V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
+3.3V Downconverter Curves
2LO LEAKAGE AT RF PORT vs. FREQUENCY
MAX2042 toc62
2LO LEAKAGE AT RF PORT vs. FREQUENCY
MAX2042 toc63
2LO LEAKAGE AT RF PORT vs. FREQUENCY
MAX2042 toc64
-20 2LO LEAKAGE AT RF PORT (dBm) -25 -30 -35 -40 TC = +85NC -45 -50 1800 2000 2200 2400 2600 LO FREQUENCY (MHz) TC = -40NC TC = +25NC
-20 2LO LEAKAGE AT RF PORT (dBm) -25 -30 -35 -40 -45 -50 PLO = -3dBm, 0dBm, +3dBm
-20 2LO LEAKAGE AT RF PORT (dBm) -25 -30 -35 -40 -45 -50 VCC = 3.0V, 3.3V, 3.6V
2800
1800
2000
2200 2400 2600 LO FREQUENCY (MHz)
2800
1800
2000
2200 2400 2600 LO FREQUENCY (MHz)
2800
RF PORT RETURN LOSS vs. RF FREQUENCY
MAX2042 toc65
IF PORT RETURN LOSS vs. IF FREQUENCY
fLO = 2200MHz 5 IF PORT RETURN LOSS (dB) 10 15 20 25 30
MAX2042 toc66
0 fIF = 300MHz RF PORT RETURN LOSS (dB) 5 10 15 20 25 30 2000 2200 2400 2600 2800 RF FREQUENCY (MHz) PLO = -3dBm, 0dBm, +3dBm
0
VCC = 3.0V, 3.3V, 3.6V
www..com
3000
50
140
230 320 410 IF FREQUENCY (MHz)
500
LO PORT RETURN LOSS vs. LO FREQUENCY
MAX2042 toc67
SUPPLY CURRENT vs. TEMPERATURE
VCC = 3.6V SUPPLY CURRENT (mA) 125 VCC = 3.3V
MAX2042 toc68
0
130
LO PORT RETURN LOSS (dB)
PLO = -3dBm 10
120
20
PLO = 0dBm
PLO = +3dBm
115
VCC = 3.0V
30 1700 1900 2100 2300 2500 LO FREQUENCY (MHz) 2700
110 -40 -15 10 35 TEMPERATURE (NC) 60 85
14
_____________________________________________________________________________________
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +5.0V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
MAX2042
+5.0V Upconverter Curves
CONVERSION LOSS vs. RF FREQUENCY
MAX2042 toc69
CONVERSION LOSS vs. RF FREQUENCY
MAX2042 toc70
CONVERSION LOSS vs. RF FREQUENCY
MAX2042 toc71
9 TC = +85C CONVERSION LOSS (dB) 8 TC = +25C 7
9
9
CONVERSION LOSS (dB)
7
CONVERSION LOSS (dB)
8
8
7
6
TC = -40C
6
PLO = -3dBm, 0dBm, +3dBm
6
VCC = 4.75V, 5.0V, 5.25V
5 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
5 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
5 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
MAX2042 toc72
INPUT IP3 vs. RF FREQUENCY
MAX2042 toc73
INPUT IP3 vs. RF FREQUENCY
PIF = 0dBm/TONE 38 INPUT IP3 (dBm) 36 VCC = 5.0V 34 32 VCC = 4.75V 30 28 VCC = 5.25V
MAX2042 toc74 MAX2042 toc77
40 PIF = 0dBm/TONE 38 INPUT IP3 (dBm) 36 34 TC = +25C TC = -40C
40 PIF = 0dBm/TONE 38 INPUT IP3 (dBm) 36 34 32 30 PLO = -3dBm, 0dBm, +3dBm
40
www..com 32
30 TC = +85C 28 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
28 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
2000
2200
2400
2600
2800
3000
RF FREQUENCY (MHz)
LO-2IF RESPONSE vs. RF FREQUENCY
MAX2042 toc75
LO-2IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm PLO = +3dBm LO-2IF RESPONSE (dBc) 75
MAX2042 toc76
LO-2IF RESPONSE vs. RF FREQUENCY
85 PIF = 0dBm
85 TC = +85C LO-2IF RESPONSE (dBc) 75
PIF = 0dBm
85
TC = +25C 65
65 PLO = 0dBm 55 PLO = -3dBm 45
LO-2IF RESPONSE (dBc)
75
65
55 TC = -40C 45 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
55 VCC = 4.75V, 5.0V, 5.25V 45
2000
2200
2400
2600
2800
3000
2000
2200
2400
2600
2800
3000
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
______________________________________________________________________________________
15
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2042
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +5.0V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
+5.0V Upconverter Curves
LO+2IF RESPONSE vs. RF FREQUENCY
MAX2042 toc78
LO+2IF RESPONSE vs. RF FREQUENCY
MAX2042 toc79
LO+2IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm
MAX2042 toc80 MAX2042 toc86 MAX2042 toc83
85
PIF = 0dBm
85 PLO = +3dBm LO+2IF RESPONSE (dBc) 75
PIF = 0dBm
85
LO+2IF RESPONSE (dBc)
LO+2IF RESPONSE (dBc)
75 TC = +85C 65 TC = +25C 55 TC = -40C 45 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
75 VCC = 4.75V, 5.0V, 5.25V 65
65 PLO = 0dBm
55 PLO = -3dBm 45 2000 2200 2400
55
45 2600 2800 3000 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) RF FREQUENCY (MHz)
LO-3IF RESPONSE vs. RF FREQUENCY
MAX2042 toc81
LO-3IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm
MAX2042 toc82
LO-3IF RESPONSE vs. RF FREQUENCY
100 PIF = 0dBm VCC = 5.25V VCC = 5.0V
100 TC = -40C
PIF = 0dBm
100
LO-3IF RESPONSE (dBc)
LO-3IF RESPONSE (dBc)
TC = +25C
80
80 PLO = -3dBm, 0dBm, +3dBm 70
LO-3IF RESPONSE (dBc)
90
90
90
80 VCC = 4.75V
www..com
70 TC = +85C
70
60 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
60 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
60 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
LO+3IF RESPONSE vs. RF FREQUENCY
MAX2042 toc84
LO+3IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm
MAX2042 toc85
LO+3IF RESPONSE vs. RF FREQUENCY
100 PIF = 0dBm
100
PIF = 0dBm
100
LO+3IF RESPONSE (dBc)
LO+3IF RESPONSE (dBc)
LO+3IF RESPONSE (dBc)
90
TC = -40C
90
90
VCC = 5.25V
80
80 PLO = -3dBm, 0dBm, +3dBm
80 VCC = 4.75V VCC = 5.0V
70
TC = +85C
TC = +25C
70
70
60 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
60 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
60 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
16
_____________________________________________________________________________________
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +5.0V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
MAX2042
+5.0V Upconverter Curves
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2042 toc87
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2042 toc88
-20 LO LEAKAGE AT RF PORT (dBm)
-20 LO LEAKAGE AT RF PORT (dBm)
TC = -40C, +25C, +85C -25
-25
-30
-30 PLO = -3dBm, 0dBm, +3dBm
-35 1800 2000 2200 2400 2600 2800 LO FREQUENCY (MHz)
-35 1800 2000 2200 2400 2600 2800 LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2042 toc89
IF LEAKAGE AT RF PORT vs. LO FREQUENCY
TC = -40C IF LEAKAGE AT RF PORT (dBm) -50 -60 -70 -80 -90 1800 2000 2200 2400 2600 2800 LO FREQUENCY (MHz) TC = +25C
MAX2042 toc90
-20 LO LEAKAGE AT RF PORT (dBm)
-40
-25
www..com
-30 VCC = 4.75V, 5.0V, 5.25V
TC = +85C
-35 1800 2000 2200 2400 2600 2800 LO FREQUENCY (MHz)
IF LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2042 toc91
IF LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2042 toc92
-40 -50 -60 -70 -80 -90 1800 2000 2200 2400 2600 PLO = -3dBm, 0dBm, +3dBm
-40 -50 VCC = 5.0V, 5.25V -60 -70 -80 VCC = 4.75V -90
IF LEAKAGE AT RF PORT (dBm)
2800
IF LEAKAGE AT RF PORT (dBm)
1800
2000
2200
2400
2600
2800
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
______________________________________________________________________________________
17
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2042
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +5.0V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
+5.0V Upconverter Curves
RF PORT RETURN LOSS vs. RF FREQUENCY
MAX2042 toc93
IF PORT RETURN LOSS vs. IF FREQUENCY
fLO = 2200MHz 5 IF PORT RETURN LOSS (dB) 10 15 20 25 30
MAX2042 toc94
0 fIF = 300MHz RF PORT RETURN LOSS (dB) 5 10 15 20 25 30 2000 2200 2400 2600 2800 PLO = -3dBm, 0dBm, +3dBm
0
VCC = 4.75V, 5.0V, 5.25V
3000
50
140
230
320
410
500
RF FREQUENCY (MHz)
IF FREQUENCY (MHz)
LO PORT RETURN LOSS vs. LO FREQUENCY
MAX2042 toc95
SUPPLY CURRENT vs. TEMPERATURE (TC)
VCC = 5.25V VCC = 5.0V
MAX2042 toc96
0 5 10 15 20 25 30 1700 1900 2100 2300 2500 PLO = 0dBm PLO = -3dBm PLO = +3dBm
150 145 SUPPLY CURRENT (mA) 140 135 130 125 120 VCC = 4.75V
www..com
LO PORT RETURN LOSS (dB)
2700
-40
-15
10
35
60
85
LO FREQUENCY (MHz)
TEMPERATURE (C)
18
_____________________________________________________________________________________
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +3.3V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
MAX2042
+3.3V Upconverter Curves
CONVERSION LOSS vs. RF FREQUENCY
MAX2042 toc97
CONVERSION LOSS vs. RF FREQUENCY
MAX2042 toc98
CONVERSION LOSS vs. RF FREQUENCY
MAX2042 toc99
9 TC = +85C CONVERSION LOSS (dB) 8 TC = +25C 7
9
9
CONVERSION LOSS (dB)
7
CONVERSION LOSS (dB)
8
8
7
6 TC = -40C 5 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
6
PLO = -3dBm, 0dBm, +3dBm
6
VCC = 3.0V, 3.3V, 3.6V
5 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
5 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
MAX2042 toc100
INPUT IP3 vs. RF FREQUENCY
MAX2042 toc101
INPUT IP3 vs. RF FREQUENCY
PIF = 0dBm/TONE 32 INPUT IP3 (dBm) 30 28 26 24 22 VCC = 3.6V
MAX2042 toc102
34 PIF = 0dBm/TONE 32 INPUT IP3 (dBm) 30 28 TC = +85C TC = +25C TC = -40C
34 PIF = 0dBm/TONE 32 INPUT IP3 (dBm) 30 28 26 24 22 PLO = +3dBm PLO = 0dBm PLO = -3dBm
34
VCC = 3.3V VCC = 3.0V
www..com 26
24 22 2000 2200
2400
2600
2800
3000
2000
2200
2400
2600
2800
3000
2000
2200
2400
2600
2800
3000
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
LO-2IF RESPONSE vs. RF FREQUENCY
MAX2042 toc103
LO-2IF RESPONSE vs. RF FREQUENCY
MAX2042 toc104
LO-2IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm LO-2IF RESPONSE (dBc) 75
MAX2042 toc105
85 PIF = 0dBm TC = +85C LO-2IF RESPONSE (dBc) 75
85 PIF = 0dBm PLO = +3dBm LO-2IF RESPONSE (dBc) 75
85
65 TC = +25C 55 TC = -40C 45 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
65 PLO = 0dBm 55 PLO = -3dBm 45 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
65
55 VCC = 3.0V, 3.3V, 3.6V 45 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
______________________________________________________________________________________
19
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2042
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +3.3V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
+3.3V Upconverter Curves
LO+2IF RESPONSE vs. RF FREQUENCY
MAX2042 toc106
LO+2IF RESPONSE vs. RF FREQUENCY
MAX2042 toc107
LO+2IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm LO+2IF RESPONSE (dBc) 75 VCC = 3.0V, 3.3V, 3.6V
MAX2042 toc108
85 PIF = 0dBm LO+2IF RESPONSE (dBc) 75 TC = +85C
85 PIF = 0dBm LO+2IF RESPONSE (dBc) 75 PLO = +3dBm
85
65 TC = +25C
65 PLO = 0dBm PLO = -3dBm 45
65
55 TC = -40C 45 2000 2200 2400
55
55
45 2000 2200 2400 2600 2800 3000 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) RF FREQUENCY (MHz)
2600
2800
3000
RF FREQUENCY (MHz)
LO-3IF RESPONSE vs. RF FREQUENCY
MAX2042 toc109
LO-3IF RESPONSE vs. RF FREQUENCY
MAX2042 toc110
LO-3IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm VCC = 3.3V LO-3IF RESPONSE (dBc) 80 VCC = 3.6V
MAX2042 toc111
90 TC = +85C LO-3IF RESPONSE (dBc) 80 PIF = 0dBm
90 PIF = 0dBm LO-3IF RESPONSE (dBc) 80
90
70 TC = -40C 60 TC = +25C
70 PLO = -3dBm, 0dBm, +3dBm 60
70 VCC = 3.0V
www..com
60
50 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
50 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
50 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz)
LO+3IF RESPONSE vs. RF FREQUENCY
MAX2042 toc112
LO+3IF RESPONSE vs. RF FREQUENCY
MAX2042 toc113
LO+3IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm 80 LO+3IF RESPONSE (dBc) VCC = 3.6V 70 60 50 40 VCC = 3.0V
MAX2042 toc114
90 PIF = 0dBm 80 LO+3IF RESPONSE (dBc) 70 60 TC = +85C 50 40 2000 2200 2400 2600 2800 TC = +25C TC = -40C
90 PIF = 0dBm 80 LO+3IF RESPONSE (dBc) 70 60 50 40
90
PLO = -3dBm, 0dBm, +3dBm
VCC = 3.3V
3000
2000
2200
2400
2600
2800
3000
2000
2200
2400
2600
2800
3000
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
20
_____________________________________________________________________________________
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +3.3V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
MAX2042
+3.3V Upconverter Curves
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2042 toc115
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2042 toc116
-20 LO LEAKAGE AT RF PORT (dBm)
-20 LO LEAKAGE AT RF PORT (dBm)
-25 TC = -40C, +25C, +85C
-25 PLO = -3dBm, 0dBm, +3dBm -30
-30
-35 1800 2000 2200 2400 2600 2800 LO FREQUENCY (MHz)
-35 1800 2000 2200 2400 2600 2800 LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2042 toc117
IF LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2042 toc118
-20 LO LEAKAGE AT RF PORT (dBm)
-40 -50 -60 -70 -80 -90 TC = -40C TC = +25C TC = +85C
-25
VCC = 3.6V VCC = 3.3V
www..com
-30
VCC = 3.0V -35 1800 2000 2200 2400 2600 2800 LO FREQUENCY (MHz)
IF LEAKAGE AT RF PORT (dBm)
1800
2000
2200
2400
2600
2800
LO FREQUENCY (MHz)
IF LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2042 toc119
IF LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX2042 toc120
-40 -50 -60 -70 -80 -90 1800 2000 2200 2400 2600 PLO = -3dBm, 0dBm, +3dBm
-40 -50 -60 -70 -80 -90
IF LEAKAGE AT RF PORT (dBm)
IF LEAKAGE AT RF PORT (dBm)
VCC = 3.0V
VCC = 3.6V VCC = 3.3V 1800 2000 2200 2400 2600 2800
2800
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
______________________________________________________________________________________
21
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2042
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +3.3V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
+3.3V Upconverter Curves
RF PORT RETURN LOSS vs. RF FREQUENCY
MAX2042 toc121
IF PORT RETURN LOSS vs. IF FREQUENCY
fLO = 2200MHz 5
IF PORT RETURN LOSS (dB)
MAX2042 toc122 MAX2042 toc124
0 fIF = 300MHz RF PORT RETURN LOSS (dB) 5 PLO = -3dBm, 0dBm, +3dBm 10 15 20 25 30 2000 2200 2400 2600 2800
0
10 VCC = 3.0V, 3.3V, 3.6V 15 20 25 30
3000
50
140
230
320
410
500
RF FREQUENCY (MHz)
IF FREQUENCY (MHz)
LO PORT RETURN LOSS vs. LO FREQUENCY
MAX2042 toc123
SUPPLY CURRENT vs. TEMPERATURE (TC)
130 VCC = 3.6V SUPPLY CURRENT (mA) 125 VCC = 3.3V
0 5 10 15 20 25 30 1700 1900 2100 2300 2500 PLO = 0dBm PLO = +3dBm
LO PORT RETURN LOSS (dB)
PLO = -3dBm
120
www..com
115
VCC = 3.0V
110 2700 -40 -15 10 35 60 85 LO FREQUENCY (MHz) TEMPERATURE (C)
22
_____________________________________________________________________________________
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer
Pin Description
PIN 1, 6, 8, 14 2 3, 4, 5, 10, 12, 13, 17 7 9, 15 11 16, 20 18, 19 -- NAME VCC RF GND LOBIAS GND LO GND IF-, IF+ EP FUNCTION Power Supply. Bypass to GND with 0.01FF capacitors as close as possible to the pin. Single-Ended 50I RF Input. Internally matched and DC shorted to GND through a balun. Provide a DC-blocking capacitor if required. Capacitor also provides some RF match tuning. Ground. Internally connected to the exposed pad. Connect all ground pins and the exposed pad (EP) together. LO Amplifier Bias Control. Output bias resistor for the LO buffer. Connect a 698I Q1% resistor (nominal bias condition) from LOBIAS to ground. The maximum current seen by this resistor is 3mA. Ground. Not internally connected. Ground these pins or leave unconnected. Local Oscillator Input. This input is internally matched to 50I. Requires an input DC-blocking capacitor. Capacitor also provides some LO match tuning. Ground. Connect all ground pins and the exposed pad (EP) together. Mixer Differential IF Output/Input Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple via grounds are also required to achieve the noted RF performance.
MAX2042
www..com
______________________________________________________________________________________
23
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2042
Detailed Description
When used as a low-side LO injection mixer in the 2300MHz to 2900MHz band, the MAX2042 provides +36dBm of IIP3, with typical noise figure and conversion loss values of only 7.3dB and 7.2dB, respectively. The integrated baluns and matching circuitry allow for 50I single-ended interfaces to the RF and the LO ports. The integrated LO buffer provides a high drive level to the mixer core, reducing the LO drive required at the MAX2042's input to a -3dBm to +3dBm range. The IF port incorporates a differential interface, which is ideal for providing enhanced 2RF-2LO performance. Specifications are guaranteed over broad frequency ranges to allow for use in WCS, LTE, WiMAX, and MMDS base stations. The MAX2042 is specified to operate over an RF input range of 2000MHz to 3000MHz, an LO range of 1800MHz to 2800MHz, and an IF range of 50MHz to 500MHz. The external IF transformer sets the lower frequency range (see the Typical Operating Characteristics for details). Operation beyond these ranges is possible (see the Typical Operating Characteristics for additional information). The MAX2042 RF input provides a 50I match when combined with a series DC-blocking capacitor. This DC-blocking capacitor required as the input is internally DC shorted to ground through the on-chip balun. When using an 8.2pF DC-blocking capacitor, the RF port input www..com typically 15dB over the RF frequency range return loss is of 2500MHz to 2900MHz. The MAX2042 is optimized for low-side LO injection applications with an 1800MHz to 2800MHz LO frequency range. The LO input is internally matched to 50I, requiring only a 2pF DC-blocking capacitor. A two-stage internal LO buffer allows for a -3dBm to +3dBm LO input power range. The on-chip low-loss balun, along with an LO buffer, drives the double-balanced mixer. All interfacing and matching components from the LO inputs to the IF outputs are integrated on-chip. The core of the MAX2042 is a double-balanced, highperformance passive mixer. Exceptional linearity is provided by the large LO swing from the on-chip LO buffer. IIP3, 2RF-2LO rejection, and noise-figure performance are typically +36dBm, 70dBc, and 7.3dB, respectively. The MAX2042 has an IF frequency range of 50MHz to 500MHz, where the low-end frequency depends on the frequency response of the external IF components.
Differential IF Interface
The MAX2042's differential ports are ideal for providing enhanced 2RF-2LO performance. The user can use a differential IF amplifier or SAW filter on the mixer IF port, but a DC block is required on both IF+/IF- ports to keep external DC from entering the IF ports of the mixer. Typical applications typically use a 1:1 transformer such as the MABAES0029 to transform the 50I differential interface to a 50I single-ended interface. The loss of this transformer is included in the data presented in this data sheet. In addition, the IF interface directly supports single-ended AC-coupled signals into or out of IF+ by shorting IF- to ground, and a 1kI resistor from IF+ to ground.
Applications Information
The RF input provides a 50I match when combined with a series DC-blocking capacitor. Use an 8.2pF capacitor value for RF frequencies ranging from 2000MHz to 3000MHz. The LO input is internally matched to 50I; use a 2pF DC-blocking capacitor to cover operations spanning the 1800MHz to 2800MHz range. The IF output impedance is 50I (differential). For evaluation, an external low-loss 1:1 (impedance ratio) balun transforms this impedance down to a 50I single-ended output (see the Typical Application Circuit). The MAX2042 has one pin (LOBIAS) that allows an external resistor to set the internal bias current. A nominal value for this resistor is shown in Tables 1 and 2. Larger value resistors can be used to reduce power dissipation at the expense of some performance loss. See the Typical Operating Characteristics to evaluate the power vs. performance tradeoff. If Q1% resistors are not readily available, substitute with Q5% resistors. Significant reductions in power consumption can also be realized by operating the mixer with an optional supply voltage of +3.3V. Doing so reduces the overall power consumption by up to 43%. See the +3.3V Supply AC Electrical Characteristics table and the relevant +3.3V curves in the Typical Operating Characteristics section to evaluate the power vs. performance tradeoffs.
Input and Output Matching
RF Interface and Balun
LO Inputs, Buffer, and Balun
Reduced-Power Mode
High-Linearity Mixer
24
_____________________________________________________________________________________
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer
A properly designed PCB is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. For the best performance, route the ground pin traces directly to the exposed pad under the package. The PCB exposed pad MUST be connected to the ground plane of the PCB. It is suggested that multiple vias be used to connect this pad to the lower-level ground planes. This method provides a good RF/thermal conduction path for the device. Solder the exposed pad on the bottom of the device package to the PCB. The MAX2042 evaluation kit can be used as a reference for board layout. Gerber files are available upon request at www.maxim-ic.com.
Layout Considerations
Proper voltage-supply bypassing is essential for highfrequency circuit stability. Bypass each VCC pin with the capacitors shown in the Typical Application Circuit and see Tables 1 and 2.
Power-Supply Bypassing
MAX2042
The exposed pad (EP) of the MAX2042's 20-pin thin QFN package provides a low thermal-resistance path to the die. It is important that the PCB on which the MAX2042 is mounted be designed to conduct heat from the EP. In addition, provide the EP with a low-inductance path to electrical ground. The EP MUST be soldered to a ground plane on the PCB, either directly or through an array of plated via holes.
Exposed Pad RF/Thermal Considerations
Table 1. Downconverter Mode Component Values
DESIGNATION C1 C2, C6, C8, C11 C3, C9 C5 C10 R1 T1 U1 QTY 1 4 0 0 1 1 1 1 DESCRIPTION 8.2pF microwave capacitor (0402) 0.01FF microwave capacitors (0402) Not installed, capacitors Not installed, capacitor 2pF microwave capacitor (0402) 698I Q1% resistor (0402) 1:1 IF balun MABAES0029 MAX2042 IC (20 TQFN) COMPONENT SUPPLIER Murata Electronics North America, Inc. Murata Electronics North America, Inc. -- -- Murata Electronics North America, Inc. Digi-Key Corp. M/A-Com, Inc. Maxim Integrated Products, Inc.
www..com
Table 2. Upconverter Mode Component Values
DESIGNATION C1 C2, C6, C8, C11 C3, C9 C5 C10 R1 T1 U1 QTY 1 4 0 0 1 1 1 1 DESCRIPTION 8.2pF microwave capacitor (0402) 0.01FF microwave capacitors (0402) Not installed, capacitors Not installed, capacitor 2pF microwave capacitor (0402) 698I Q1% resistor (0402) 1:1 IF balun MABAES0029 MAX2042 IC (20 TQFN) COMPONENT SUPPLIER Murata Electronics North America, Inc. Murata Electronics North America, Inc. -- -- Murata Electronics North America, Inc. Digi-Key Corp. M/A-Com, Inc. Maxim Integrated Products, Inc.
______________________________________________________________________________________
25
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer MAX2042
Typical Application Circuit
3 N.C. 2 1 4 5 T1 IF 1:1
C5 GND GND VCC GND 16 15 GND IF+ IF18
20 C3 C2 VCC C1 RF 1
19
17
RF
2
MAX2042
14 C11 GND
VCC
GND
3
13
GND
4 EP
12
GND C10 LO INPUT
GND
5 6 LOBIAS VCC 7 VCC 8 9 GND 10 GND
11
LO
www..com
VCC C6
R1 NOTE: PINS 3, 4, 5, 10, 12, 13, AND 17 ARE ALL INTERNALLY CONNECTED TO THE EXPOSED GROUND PAD. CONNECT THESE PINS TO GROUND TO IMPROVE ISOLATION. VCC C9 PINS 9 AND 15 HAVE NO INTERNAL CONNECTION BUT CAN BE EXTERNALLY GROUNDED TO IMPROVE ISOLATION.
C8
26
_____________________________________________________________________________________
SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer
Chip Information
PROCESS: SiGe BiCMOS
PACKAGE TYPE 20 TQFN-EP
Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. PACKAGE CODE T2055+3 DOCUMENT NO. 21-0140
MAX2042
www..com
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
(c)
27
2009 Maxim Integrated Products
Maxim is a registered trademark of Maxim Integrated Products, Inc.


▲Up To Search▲   

 
Price & Availability of MAX2042

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X